Semi-supervised extractive speech summarization via co-training algorithm

نویسندگان

  • Shasha Xie
  • Hui Lin
  • Yang Liu
چکیده

Supervised methods for extractive speech summarization require a large training set. Summary annotation is often expensive and time consuming. In this paper, we exploit semi-supervised approaches to leverage unlabeled data. In particular, we investigate co-training for the task of extractive meeting summarization. Compared with text summarization, speech summarization task has its unique characteristic in that the features naturally split into two sets: textual features and prosodic/acoustic features. Such characteristic makes co-training an appropriate approach for semi-supervised speech summarization. Our experiments on the ICSI meeting corpus show that by utilizing the unlabeled data, co-training significantly improves summarization performance when only a small amount of labeled data is available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

Hybrids of supervised and unsupervised models for extractive speech summarization

Speech summarization, distilling important information and removing redundant and incorrect information from spoken documents, has become an active area of intensive research in the recent past. In this paper, we consider hybrids of supervised and unsupervised models for extractive speech summarization. Moreover, we investigate the use of the unsupervised summarizer to improve the performance o...

متن کامل

Extractive Summarization Using Supervised and Semi-Supervised Learning

It is difficult to identify sentence importance from a single point of view. In this paper, we propose a learning-based approach to combine various sentence features. They are categorized as surface, content, relevance and event features. Surface features are related to extrinsic aspects of a sentence. Content features measure a sentence based on contentconveying words. Event features represent...

متن کامل

Query-Focused Multi-Document Summarization Using Co-Training Based Semi-Supervised Learning

This paper presents a novel approach to query-focused multi-document summarization. As a good biased summary is expected to keep a balance among query relevance, content salience and information diversity, the approach first makes use of both the content feature and the relationship feature to select a number of sentences via the cotraining based semi-supervised learning, which can identify the...

متن کامل

Combining Optimal Clustering And Hidden Markov Models For Extractive Summarization

We propose Hidden Markov models with unsupervised training for extractive summarization. Extractive summarization selects salient sentences from documents to be included in a summary. Unsupervised clustering combined with heuristics is a popular approach because no annotated data is required. However, conventional clustering methods such as K-means do not take text cohesion into consideration. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010